Adjective Sense Disambiguation at the Border Between Unsupervised and Knowledge-Based Techniques
نویسندگان
چکیده
The present paper extends a new word sense disambiguation method [9] to the case of adjectives. The method lies at the border between unsupervised and knowledge-based techniques. It performs unsupervised word sense disambiguation based on an underlying Naı̈ve Bayes model, while using WordNet as knowledge source for feature selection. The proposed extension of the disambiguation method makes ample use of the WordNet semantic relations that are typical of adjectives. Its performance is compared to that of previous approaches that rely on completely different feature sets. Test results show that feature selection using a knowledge source of type WordNet is more effective in the disambiguation of adjective senses than local type features (like part-of-speech tags) are.
منابع مشابه
معرفی رویکردی ماشینی با استفاده از الگوریتم لسک و برچسبدهی نحوی جهت رفع ابهام از معنای کلمات
The present study introduces a machine-based approach for word sense disambiguation (WSD). In Persian, a morphologically complex language, POS tag which lots of homographs are made, one way for doing WSD is allocating the right Part Of Speech (POS) tags to words prior to WSD. Since the frequency of noun and adjective homographs in different Persian POS tag text corpuses is high, POS tag disambi...
متن کاملModels and Training for Unsupervised Preposition Sense Disambiguation
We present a preliminary study on unsupervised preposition sense disambiguation (PSD), comparing different models and training techniques (EM, MAP-EM with L0 norm, Bayesian inference using Gibbs sampling). To our knowledge, this is the first attempt at unsupervised preposition sense disambiguation. Our best accuracy reaches 56%, a significant improvement (at p <.001) of 16% over the most-freque...
متن کاملAn Insight into Word Sense Disambiguation Techniques
This paper presents various techniques used in the area of Word Sense Disambiguation (WSD). There are a number of techniques such as: Knowledge based approaches, which use the knowledge encoded in Lexical resources; Supervised Machine Leaning methods in which the classifier is made to learn from previously semantically annotated corpus; Unsupervised approaches that form cluster occurrences of w...
متن کاملCombining Supervised and Unsupervised Lexical Knowledge Methods for Word Sense Disambiguation
This work combines a set of available techniques – which could be further extended – to perform noun sense disambiguation. We use several unsupervised techniques (Rigau et al., 1997) that draw knowledge from a variety of sources. In addition, we also apply a supervised technique in order to show that supervised and unsupervised methods can be combined to obtain better results. This paper tries ...
متن کاملUnsupervised, Knowledge-Free, and Interpretable Word Sense Disambiguation
Interpretability of a predictive model is a powerful feature that gains the trust of users in the correctness of the predictions. In word sense disambiguation (WSD), knowledge-based systems tend to be much more interpretable than knowledge-free counterparts as they rely on the wealth of manually-encoded elements representing word senses, such as hypernyms, usage examples, and images. We present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fundam. Inform.
دوره 91 شماره
صفحات -
تاریخ انتشار 2009